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 Why is Energy Important? 

2 



© Agrawal, 2012 

World Population 

1769 

Data source: Wikipedia & UN 



James Watt and his 1769 steam engine  

Source: David J.C. Mackay 2009 
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Energy Consumption is Way of Life in 

Industrialized Countries 

2010 Primary energy consumption per capita 
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Fossil Fuel Provides 85% Energy! 
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However… 
 The world population is expected to rise 
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 World energy consumption rate is 
expected to rise 
 

  



©2012 R. Agrawal  

 
World Market Energy Consumption 

Adaptation : EIA 

 World primary energy usage rate in 2007 was 14.8 TW 
 By 2050, the usage rate could be 28 TW 

Consumption rate could double! 
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However… 
 The world population is expected to rise 

 

 World energy consumption rate is expected to rise 
 

 China’s current economic growth is 
expected to accelerate energy consumption 
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• Average growth rate over past quarter century > 10%! 
• Current China’s primary energy consumption = 17.8 billion boe   
• Current USA’s primary energy consumption = 16.7 billion boe 

 
China’s Recent Energy Consumption 

Source : BP Statistical Review of world Energy 2011 
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China’s Recent Energy Consumption 

• Average growth rate > 10%! 
 
•2007 China’s primary energy consumption = 13.7 billion boe  
 
•Current China’s primary energy consumption = 17.8 billion boe  
 
• Current USA’s primary energy consumption = 16.7 billion boe 
 

• If primary energy @ per capita rate of Japan = 43.9 billion boe 
 

• Current total world’s energy consumption = 81.4 billion boe 
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However… 
 The world population is expected to rise 

 

 World energy consumption rate is expected to rise 
 

 China’s current economic growth is expected to accelerate 
energy consumption 
 

 Oil production will peak during the lifetime 
of a child born today 
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However… 
 The world population is expected to rise 

 

 World energy consumption rate is expected to rise 
 

 China’s current economic growth is expected to accelerate 
energy consumption 
 

 Oil production will peak during the lifetime of a child born 
today 
 

 For most nations it is national energy independence and 
security issue 
 

 It takes a long time to develop a new 
energy source and its infrastructure 
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Fossil fuel period 

Data source: Wikipedia & UN 

Renewable  
Economy period 

Fossil Energy: in context of human civilization 
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Fossil fuel period 

Data source: Wikipedia & UN 

Therefore, we must understand energy transformation and 
use issues to develop alternative energy strategies 

Fossil Energy: in context of human civilization 

Renewable  
Economy period 



Some Alternate Resources 

• Biomass 
• Hydroelectricity 
• Wind 
• Geothermal 
• Nuclear 
• Solar  

Solar is the only easily available energy source that can alone 
meet all the energy needs. 



Solar economy vision  

Agrawal  and Singh, Annual Rev. Chem. Bio. Eng. , 2010 
©2010, R. Agrawal 



 
 

Development of a Solar Economy 
Provides Unprecedented opportunity for 

Innovations 
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The Journey of Solar Photons 

Looking through the lens of time 
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Absorption & Radiation from 
Earth’s surface 

Time spent ~ O(100 s) 

~ few seconds 
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Dissipation during water cycle 

Heat dissipation 
in condensation 

Time spent 
 ~ O(104 s) 
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Dissipation 
Time spent 

Dissipation during carbon cycle 

O(105 s) 

O(106 s) 

O(1012 s) Fossil fuel 

Soil carbon 
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Transform solar Energy 

Use it for human activities 

Dissipate to outer space 

Harness solar energy 
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Challenge for solar economy 

Harness, Transform, Store and Use 
solar photons on a time scale of 
human activities ~ O(103-105 s)! 
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A Three Part Presentation …..   
 
1. Harnessing of Solar Energy -- Solar 

Cells from Nanocrystal Inks 
 
 

2. Transformation of Solar Energy --
Energy System Analysis with 
Emphasis on Transportation Sector 
 
 

3. Storage of Solar Energy -- A Chemical 
Storage Cycle 
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Solar Cell 
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Solar Cell 
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Cd  Te 

Zincblende 
II-VI  CdTe 
III-V  GaAs 

Solar Material Structure 
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Diamond Cubic 
IV  Silicon 

Chalcopyrite 
I-III-VI2  CIGSe 

Si Cu In/Ga Se 



Cu(In,Ga)Se2 (CIGSe)Solar Cell 

© R. Agrawal, 2012 
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 High photon absorption coefficient 

 Low material consumption 

 Optimal bandgap by adjusting In/Ga 

ratio – higher voltage achievable 

 Most efficient (~20%) amongst thin-

film solar cells at lab scale 



Our CIGSe Liquid Deposition Method 

© R. Agrawal, 2012 
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Synthesis of CISe Nanocrystal Ink 

Precursors:   CuCl, InCl3, Se  
Solvent:   Oleylamine 
Conditions:  P = 1 atm 
  T = 225 – 285 C 

Solution Phase Batch Reaction 
Observed  band gap = 1.04ev 

EDX composition analysis 
 

UV-VIS 
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HR-TEM of the Chalcopyrite Nanocrystals 

Large area TEM image HR-TEM of a nanocrystal 

[221] Zone Axis 



Rapid Thermal Processing (RTP) 
with Se at 500 oC to form a 
dense highly crystalline layer 

Slot, Knife, or Roll Coating 

Scalable Coating Process and Dense Thin Film Formation 



Photovoltaic Device Performance 

Cu(In,Ga)(S,Se)
2
 Solar Cell 

1 
in

ch
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However, a need to make thin film solar 
cells from earth abundant elements….  
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Thin Film Solar Cells From Earth 
Abundant  
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CIGS                                            CZTS 
Cu2(InyGa1-y)(SxSe1-x)4 Cu2ZnSn(SxSe1-x)4 

• Earth-Abundant Materials 
 

• Similar (Kesterite) Crystal System 
 
 

Cu 
Zn 
Sn 
 S 

  Cu 
In/Ga 
   S 
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Thin Film Solar Cells From Earth 
Abundant  



CZTSSe Liquid Deposition 
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CZTS 
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CZTSSe from Nanocrystal Ink 

• Nanoparticle Optimization 
• Sintering Optimization 

1 
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Band Gap Tailoring with partial Ge 
substitution for Sn 

Reproducible results > 9% efficiency  with 30% Ge-alloying 

CZTGeSSe – 30% Ge 
η       =  9.4% 
Jsc     =  31.9 mA/cm2 

Voc    =  0.461 V 
FF      =  63.9% 
Rsh    =  0.54 kΩ cm2 

Rs      =  0.82 (0.81) Ω cm2 

A       =  1.8 (1.7)  



 Possible to make nanocrystal inks of the 
compound semiconductors.   

 Proof-of-concept demonstrated for potentially 
low cost solar cells from nanocrystal inks.  

 Kinetics of nanoparticle synthesis, insitu 
sintering of the absorber layer and optoelectronic 
characterization and modeling studies in 
progress to improve efficiency of these solar 
cells.   
 

Summary – Harnessing of Solar Energy: 
Nanocrystal Based Solar Cells 

©2012, R. Agrawal 



A Three Part Presentation …..   
 
1. Harnessing of Solar Energy -- Solar 

Cells from Nanocrystal Inks 
 
 

2. Transformation of Solar Energy --
Energy System Analysis with 
Emphasis on Transportation Sector 
 
 

3. Storage of Solar Energy -- A Chemical 
Storage Cycle 
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… Of all the end uses most challenging is 
transportation    

Conversion
Processes

Air

Solar Energy

Water

T
R
A
N
S
P
O
R
T
A
T
I
O
N

High
Energy

Density
Fuel
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High Energy Density Fuel from 
Renewable Resources 

 
 
An Obvious Choice is Use of Biomass for 
Liquid Hydrocarbon Fuel …. 
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Liquid fuels from biomass 
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Biomass Resource Classification  

SAW 

biomass 

• Sustainably available waste 
• Crop, forest residues 
• Manure, municipal waste 

etc. 

Dedicated 
fuel crops 

Regulated 
fuel crops 

 
 

• Grown on spare land  
• Minimal additional 

energy input 

 
•  Grown on land managed 

for energy use 
• Compete with other forms 

of energy for land use 
 

Sustainably 
Available 

(SA) 
Biomass 

Agrawal  and Singh, Annual Rev. Chem. Bio. Eng. , 2010 

RF crops 

©2010, R. Agrawal 



What are the process options of converting 
biomass to liquid fuel? 

©2010, R. Agrawal 
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SA
Biomass

Standalone processes
 Gasification-FT
 Fermentation
 Pyrolysis-hydrotreating Liquid

Fuel

Water

Solar Energy

Air CO2

Biomass -to-liquid fuel: carbon recovery 

1. Singh, Delgass, Ribeiro and Agrawal, Environ. Sci. Tech., 2010 
2. Agrawal  and Singh, Annual Rev. Chem. Bio. Eng. , 2010 

~ 33-47%  
biomass 
carbon 

recovered as 
liquid fuel 
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Self-contained processes + SA biomass for US 
transportation 

• SA biomass availability potential= 498 Million metric tons/yr1 
 

 
•Transportation fuels use in the USA, 2007 =13.28 Mbbl/day2   
 

 
  
 

21% (2.8 Mbbl/day) of current US transportation demand 
produced using SA biomass with best self-contained process 

 

1. Liquid transportation fuels NRC report, 2010 
2. Davis et al., Transportation energy data book, 2009 
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How do we increase liquid fuel from SA biomass? 

©2010, R. Agrawal 
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SA
Biomass

Standalone processes
 Gasification-FT
 Fermentation
 Pyrolysis-hydrotreating Liquid

Fuel

Water

Solar Energy

Air CO2

Biomass -to-liquid fuel: carbon recovery 

1. Singh, Delgass, Ribeiro and Agrawal, Environ. Sci. Tech., 2010 
2. Agrawal  and Singh, Annual Rev. Chem. Bio. Eng. , 2010 

~ 33-47%  
biomass 
carbon 

recovered as 
liquid fuel Why is carbon recovery low? 

Increased carbon recovery higher liquid fuel output 
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High oxygen content in biomass 
 
 
 

Energy per carbon atom in biomass is lower than the 
corresponding energy per carbon atom in high energy 

density fuels such as gasoline 
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Lower carbon recovery during conversion to 
high energy density liquid Fuel 

Biomass                                                 Gasoline 
~450 kJ/mol C                                          605 kJ/mol C  



Let us examine efficiencies at which supplemental 
forms of energy are recovered from Sunlight 

©2010, R. Agrawal 



Efficiencies of Solar Energy Recovery 
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Efficiencies of Solar Energy Recovery 
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Efficiencies of Solar Energy Recovery 
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Efficiencies of Solar Energy Recovery 
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Efficiencies of Solar Energy Recovery 

Estimated maximum recovery 
efficiency 1 

•C3 crops= 4.6% 
•C4 crops=6% 

1. Zhu et al.  Curr. Opin. Biotechnol. , 2008 ©2010, R. Agrawal 



Efficiencies of Solar Energy Recovery 

Estimated maximum recovery 
efficiency 1 

•C3 crops= 4.6% 
•C4 crops=6% 
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An Observation 
 

Biomass Should be Viewed as a Source of Carbon 
and  

NOT as a Primary Source of Energy 
 



An Observation 
 

Biomass Should be Viewed as a Source of Carbon 
and  

NOT as a Primary Source of Energy 
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Challenge & Opportunity:  
              Design New Processes to increase biomass carbon recovery  



Available forms of supplementary energy 
to increase biofuel yield  

• Heat  
 

•Electricity 
 
•H2 
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Heat Electricity H2

SA
Biomass

Augmented Processes
 Gasification-FT
 Fermentation
 Pyrolysis/Hydropyrolysis
 Catalytic/Biocatalytic
 Solar thermal

Liquid
Fuel

Water

Solar Energy

Air

Augmented Processes : up to 100%  biomass carbon 
recoverable as liquid fuel 



Augmented processes using H2 
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100% SA biomass carbon recovery for US 
transportation 

• SA biomass availability potential= 498 Million metric tons/yr1 
 

 
•Transportation fuels use in the US, 2007 =13.28 Mbbl/day2   
 

 
  
 

47% (6.2 Mbbl/day) of current US transportation demand 
produced using SA biomass with H2CAR process 

 

1. Liquid transportation fuels NRC report, 2010 
2. Davis et al., Transportation energy data book, 2009 
H2CAR  estimated yield: 329 ethanol-gallon-equivalent/ton ©2010, R. Agrawal 



How can we harness incident solar energy 
efficiently to meet the demand? 

Still >50% of deficit liquid fuel demand exists 

©2010, R. Agrawal 



Use other efficient secondary energy forms from Sun  

T
R
A
N
S
P
O
R
T
A
T
I
O
N

Air

Heat Electricity H2

Water

Solar Energy
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•Electricity via PHEVs for light duty vehicles (LDV) 
 

•H2 for Fuel Cell Vehicles 
 

©2010, R. Agrawal 

Use other efficient secondary energy forms from Sun  



Use of PHEVs + Augmented processes (H2CAR) 

• SA biomass availability potential= 498 Million metric tons/yr1 
 

• Transportation fuels use in the US, 2007 =13.28 Mbbl/day2   
 

• Liquid fuel produced from SA biomass = 6.2 Mbbl/day 
 

• Oil potentially displaced by PHEV40 = 5.5 Mbbl/day3 
 

 
88.1% (11.7 Mbbl/day equivalent) of current US 

transportation demand could now be met 
 

1. Liquid transportation fuels NRC report, 2010 
2. Davis et al., Transportation energy data book, 2009 
3. Parks, Denholm and Markel, NREL/TP-640-41410, 2007 ©2010, R. Agrawal 



Systems analysis of the transportation sector and 
chemicals production 

Synergistic integration at various levels needed! 
Agrawal  and Mallapragada,  AIChE J. , 2010 ©2010, R. Agrawal 



• Energy Systems Analysis is important – it provides 
valuable insights.  
 

• Must develop efficient and cost effective solutions for a 
world driven by renewable energy.  
 
• Must provide solutions for transition from fossil to 
renewable energy 
 

• Energy Systems Analysis is Fun!  
 

 
 

Summary – Transformation of solar Energy: 
Analysis of Energy System 

©2012, R. Agrawal 



A Three Part Presentation …..   
 
1. Harnessing of Solar Energy -- Solar 

Cells from Nanocrystal Inks 
 
 

2. Transformation of Solar Energy --
Energy System Analysis with 
Emphasis on Transportation Sector 
 
 

3. Storage of Solar Energy -- A Chemical 
Storage Cycle 
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GWh level Electrical Energy Storage 
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Some energy storage options 

Need- high energy density and storage 
efficient solutions! 

Na-S Li-ion 

GH2 LH2 

CAES 

Hydro 
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Reference: EPRI report on Storage Technologies, 2010  
Hydro= pumped hydroelectric power, CAES= compressed air energy storage 
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Carbon fuels for energy storage 

• Store as liquid to minimize volumes 
• Avoid handling large volume of pressurized gas  

Na-S Li-ion 

GH2 LH2 

CAES 

Hydro 
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Closed carbon cycle for energy storage  
liquid CO2  liquid fuel 

Very little external carbon required as make up! 
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Among carbon fuels.. 
… consider the use of methane 

Fuel Exergy per carbon (kJ/mol C) 
Methane 806 
Ethane 723 

Propane 692 
Iso-octane 652 

Cetane 640 
Methanol 693 
Ethanol 654 

Dimethyl Ether (DME) 684 
• CH4  highest energy content per carbon  
• Liquefaction energy penalty (-162 oC) 
 

 



©2013 R. Agrawal 

Methane-cycle (Storage mode) 

SOEC=Solid Oxide Electrolysis 

-56 oC -162 oC 

Minimize solar energy penalty of CH4 liquefaction 
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Methane-cycle (Delivery mode) 

 
 Solid Oxide 

Fuel Cell for 
electricity 

 
 

No additional power consumed for CO2 capture 
and liquefaction! 

-162 oC -56 oC 
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Methane storage simulation results 

• Efficiency: Methane superior to H2  
• Volume: Methane superior to other options 

Simulations carried out using Aspen Plus 

Na-S Li-ion 

GH2 LH2 

CAES 

Hydro 

Methane-low 

Methane-high 
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• High storage efficiency cycles using methane  and 
carbon dioxide storage.  
 

•Other chemicals should also be explored. 
 

 
 

Summary – Storage of solar Energy:  
A Chemical Storage Cycle 

©2012, R. Agrawal 



In Conclusion… 

• Solar Economy is a must for long term existence of human 
civilization.  
 
•We will have to learn to harness, transform and store solar 
energy on a time scale of use. 
 
•Need for a careful systems analysis to identify synergies and 
create efficient conversion and use technologies.  
 
 
 

©2010, R. Agrawal 
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Overall Summary  



Acknowledgments (Current Collaborators) 
Energy Systems Analysis and Distillation: 
Prof. Mohit Tawarmalani (Krannert School of Management) 

Biomass To Liquid Fuel: 
Prof. Nick Delgass (Chemical Engineering) 
Prof. Fabio Ribeiro (Chemical Engineering) 
Prof. Maureen McCann (Biological Sciences Molecular Biosciences) 
Prof. Nick Carpita ( Agriculture- Botany and Plant Pathology) 
Prof. Hilkka Kenttämaa (Chemistry) 
Prof. Mahdi Abou-omar  (chemistry) 

Solar Cell: 
Prof. Mark Lundstrom (Electrical Engineering) 
Prof. M. Ashraf Alam (Electrical Engineering) 
Dr. Eric Stach  (Brookhaven National Lab) 
Dr. Hans Werner Schock and Thomas Unold (HZB, Berlin) 
 ©2012, R. Agrawal 



Funding Acknowledgment 
 
NSF Solar Economy IGERT 
 
DOE Distillation 
 
DOE Liquid Fuels 
 
DOE C3Bio EFRC 
 
AFSOR Liquid Fuel 
 
NSF EFRI 
 
DOE SunShot 
 
 

©2012, R. Agrawal 



The Research Team 

©2012, R. Agrawal 



….Thank you 

©2008, R. Agrawal 



©2012 R. Agrawal  

 
Availability of Primary Energy Sources 
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World Oil Production 

Total proven conventional oil reserve = 1383 billion bbl 
Source : BP Statistical Review of world Energy 2011 
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World Oil Reserves-to-Production (R/P) Ratios 

 Reserves are 29% above 1997 level 
 

 Production is 14% higher than 1997 level 
 

 USA R/P = 11.3 years 
 

 USA R/Consumption = 4.4 years 
Source : BP Statistical Review of world Energy 2011 
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Natural Gas Production 

 Total proven gas reserve = 187.1 trillion m3 

 Natural gas demand continues to rise 
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Natural Gas Reserves-to-Production Ratios 

 Reserves are 64% above 1997 level 
 

 Production is 14% higher than 1997 level 
 

 USA R/P = 118 years* 
 

 In USA, natural gas production has remained flat over the last 
decade, but sudden spike since 2007 
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Source : BP Statistical Review of world Energy 2011 

* US Energy Information Administration 
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Coal 

 Proven World Reserve = 860 billion tons 

 World Reserve-to-Production Ratio = 118 years 

 USA Reserve-to-Production Ratio = 241 years 

Source : BP Statistical Review of world Energy 2011 
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It seems that there is enough hydrocarbon 
fuel to last for the next fifty years! 
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It seems that there is enough hydrocarbon 
fuel to last for the next fifty years! 

However….. 
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