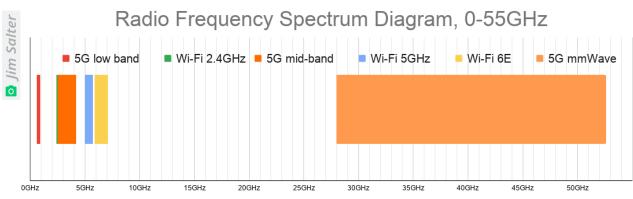
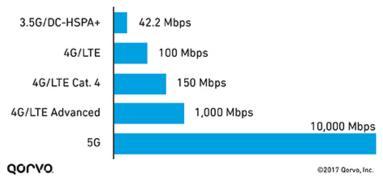

Overcoming the Digital Divide by Large-Scale Coverage Analyses for mmWave Cellular Networks

Yaguang Zhang, James V. Krogmeier, Christopher R. Anderson, and David J. Love

Oct. 30, 2022



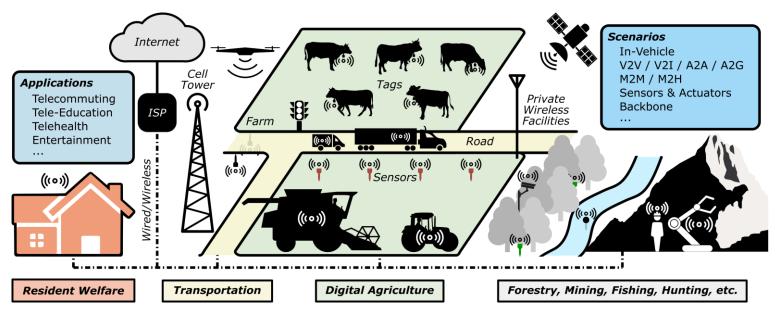
- Millimeter Wave (mmWave) Measurements
 O Extremely sensitive to blockages
- Channel Charting (CC) may be a good fit
 O But there are many new challenges
- Dense network is impractical in near future
 O Especially for ubiquitous coverage in rural areas
- Research Opportunities in Overcoming Digital Divide
 - Site-specific channel modeling & simulation
 - On-demand facility deployment



• Motivations

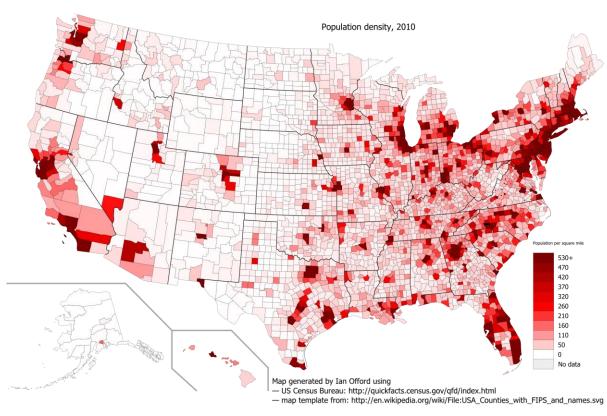
- Urban: higher speed & bigger network capacity
 - mmWave: underutilized spectrum resource

Downlink Speeds by Technical Generation


Traffic capacity: Driving network hyper-densification with more small cells everywhere.

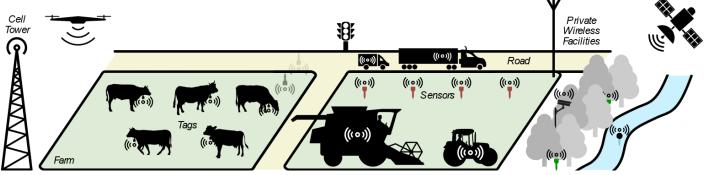
• Motivations

4

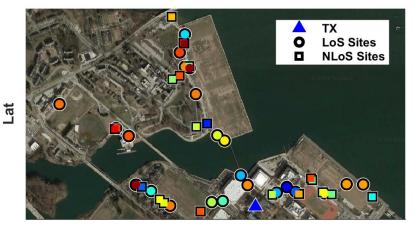

- Urban: higher speed & bigger network capacity
- Rural: "ubiquitous" coverage
 - New vision: connecting people things

The illustration is from: Y. Zhang, D. J. Love, J. V. Krogmeier, C. R. Anderson, R. W. Heath and D. R. Buckmaster, "Challenges and Opportunities of Future Rural Wireless Communications," in IEEE Communications Magazine, vol. 59, no. 12, pp. 16-22, December 2021, doi: 10.1109/MCOM.001.2100280.

- Connecting People => Connecting Things
 - In the U.S., rural regions account for 97% of the land area but only 19.3% of the population.


- Connecting People => Connecting Things
 - In the U.S., rural regions account for 97% of the land area but only 19.3% of the population.
 - Cisco is anticipating 29.3 billion devices connected to IP networks by the year of 2023, with around half of these connections being machine-to-machine.

⁶ Image by jeferrb from Pixabay.


- Connecting People => Connecting Things
 - In the U.S., rural regions account for 97% of the land area but only 19.3% of the population.
 - Cisco is anticipating 29.3 billion devices connected to IP networks by the year of 2023, with around half of these connections being machine-to-machine.
 - In the U.S., digital agriculture could drive an annual additional gross benefit of US\$47–65 billion, and rural broadband connectivity could contribute over one-third of this.

- Connecting People => Connecting Things
 - In the U.S., rural regions account for 97% of the land area but only 19.3% of the population.
 - Cisco is anticipating 29.3 billion devices connected to IP networks by the year of 2023, with around half of these connections being machine-to-machine.
 - In the U.S., digital agriculture could drive an annual additional gross benefit of US\$47–65 billion, and rural broadband connectivity could contribute over one-third of this.
 - 49% of U.S. car crash fatalities in 2015 occurred in rural regions. Wireless connectivity could reduce these fatalities by 80%.

- Suburban Measurement Campaign @ 28GHz
 - o At United State Naval Academy (USNA)
 - 50 individual sites + 2 continuous tracks
 - Basic Transmission Losses in decibel (dB)

Lon (a) Overview for the basic transmission losses of all 50 individual sites

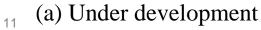
⁹ Satellite images courtesy of Google Maps.

(b) Overview for the basic transmission
 losses of the two continuous tracks

MEASUREMENT SETUP

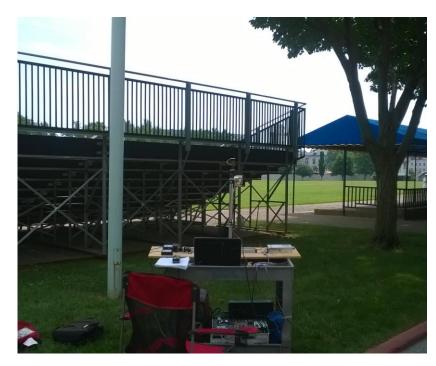
(a) RX on an electric car

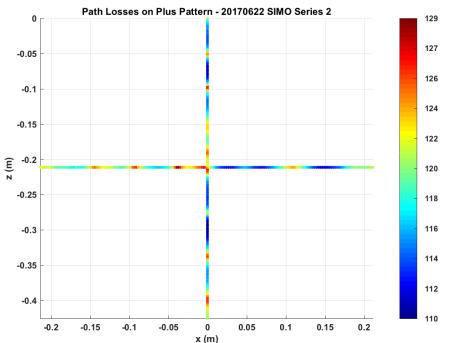
(b) RX on a trolley



(c) Before a continuous signal recording for a pedestrian path

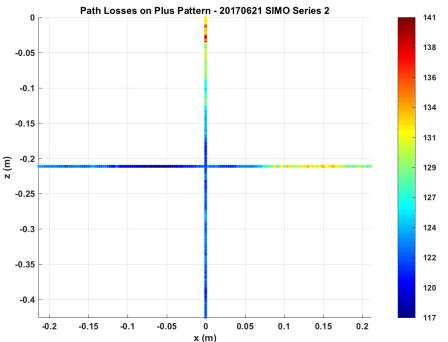
A custom-designed positioning system
 Receiver (RX) scanned over a "+" pattern

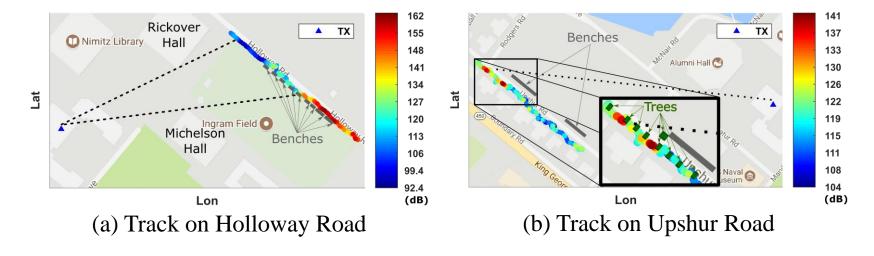




(b) Under deployment at RX

A custom-designed positioning system
 Receiver (RX) scanned over a "+" pattern




A custom-designed positioning system
 Receiver (RX) scanned over a "+" pattern

- Blockage happens "everywhere"
- The influence is huge
 - Bleacher: 19 dB => ~79.4 fold
 - Tree: 24 dB => ~251.2 fold

¹⁴ Road maps courtesy of Google Maps.

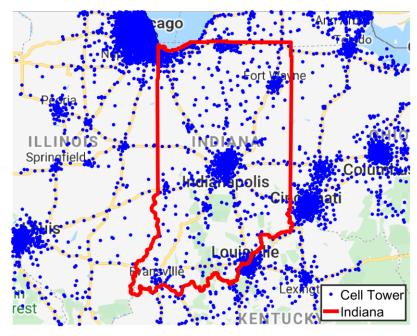
DISCUSSION

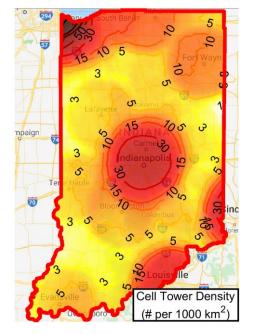
- High sensitivity on local blockages is an issue
 Frequent high-accuracy location information is needed for optimizing resource management
- Channel Charting (CC) may be useful
 - Self-supervising
 - o Geographical information not required
- But there are more challenges
 - High-dimension "latent" space
 - Requirements on precision and accuracy
- => Semi-supervised learning with geo info?



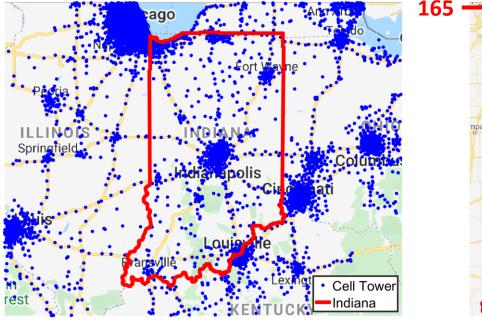
DISCUSSION

- High sensitivity on local blockages is an issue
 Frequent high-accuracy location information is needed for optimizing resource management
- Broad application of mmWave may further broaden the digital divide

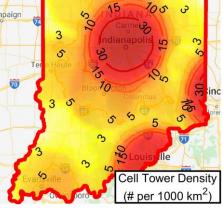



 Communication infrastructure deployed in rural areas lags its urban counterparts
 Throughout the world

- Communication infrastructure deployed in rural areas lags its urban counterparts
 - o Throughout the world
 - Network operators prioritize urban tower density


(a) Tower laydown of one national carrier

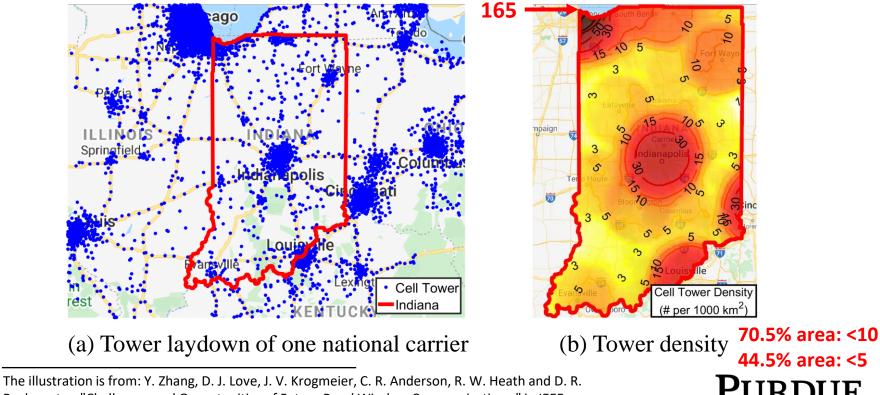
(b) Tower density


The illustration is from: Y. Zhang, D. J. Love, J. V. Krogmeier, C. R. Anderson, R. W. Heath and D. R. Buckmaster, "Challenges and Opportunities of Future Rural Wireless Communications," in IEEE Communications Magazine, vol. 59, no. 12, pp. 16-22, December 2021, doi: 10.1109/MCOM.001.2100280.

19

- Communication infrastructure deployed in rural areas lags its urban counterparts
 - Throughout the world
 - Network operators prioritize urban tower density

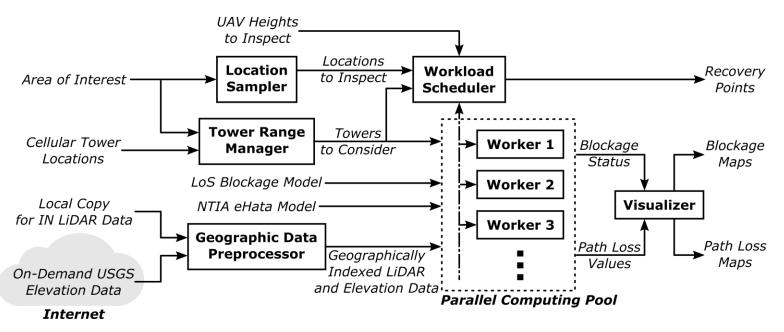
(a) Tower laydown of one national carrier



(b) Tower density

The illustration is from: Y. Zhang, D. J. Love, J. V. Krogmeier, C. R. Anderson, R. W. Heath and D. R. Buckmaster, "Challenges and Opportunities of Future Rural Wireless Communications," in IEEE Communications Magazine, vol. 59, no. 12, pp. 16-22, December 2021, doi: 10.1109/MCOM.001.2100280.

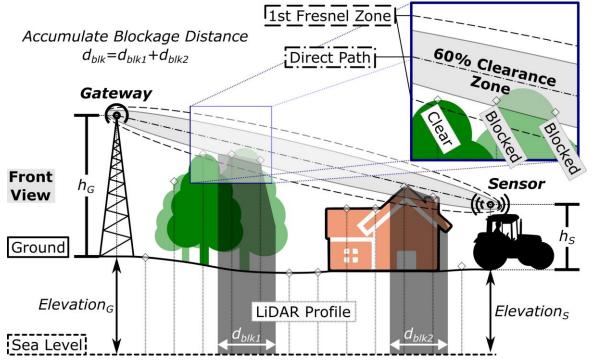
- Communication infrastructure deployed in rural areas lags its urban counterparts
 - Throughout the world
 - Network operators prioritize urban tower density


Buckmaster, "Challenges and Opportunities of Future Rural Wireless Communications," in IEEE Communications Magazine, vol. 59, no. 12, pp. 16-22, December 2021, doi: 10.1109/MCOM.001.2100280.

- Communication infrastructure deployed in rural areas lags its urban counterparts
 - Throughout the world
 - Network operators prioritize urban tower density
 - o mmWave will broaden the gap

LARGE-SCALE COVERAGE ANALYSES

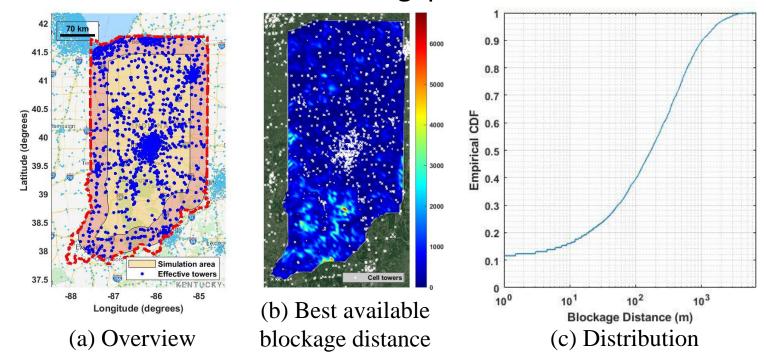
- Site-Specific Channel Modeling & Simulation
 - Cumulative blockage distance
 - o Path loss

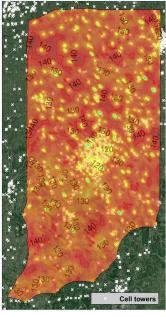


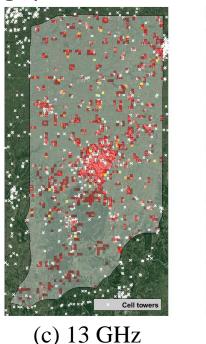
More details on the simulator implementation can be found in: Y. Zhang, T. Arakawa, J. V. Krogmeier, C. R. Anderson, D. J. Love and D. R. Buckmaster, "Large-Scale Cellular Coverage Analyses for UAV Data Relay via Channel Modeling," ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp. 1-6, doi: 10.1109/ICC40277.2020.9149403.

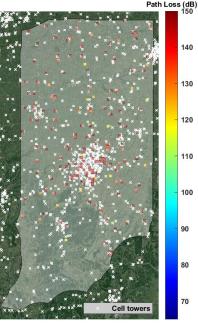
LARGE-SCALE COVERAGE ANALYSES

- Site-Specific Channel Modeling & Simulation
 O Cumulative blockage distance
 - o Path loss

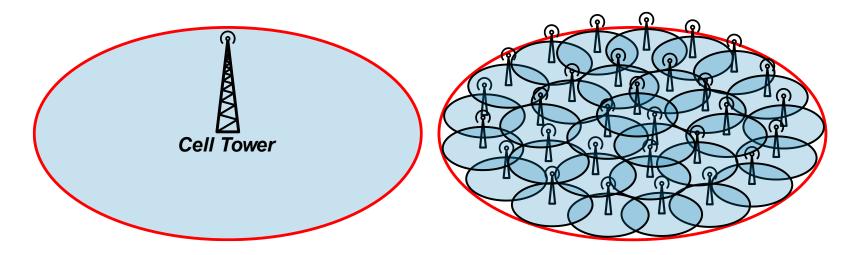



More details on the simulator implementation can be found in: Y. Zhang, T. Arakawa, J. V. Krogmeier, C. R. Anderson, D. J. Love and D. R. Buckmaster, "Large-Scale Cellular Coverage Analyses for UAV Data Relay via Channel Modeling," ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp. 1-6, doi: 10.1109/ICC40277.2020.9149403.


- Communication infrastructure deployed in rural areas lags its urban counterparts
 - o Throughout the world
 - Network operators prioritize urban tower density
 - o mmWave will broaden the gap



- Communication infrastructure deployed in rural areas lags its urban counterparts
 - o Throughout the world
 - Network operators prioritize urban tower density
 - mmWave will broaden the gap Max. allowed path loss = 150 dB


(d) 28 GHz

(a) 1900 MHz

IHz (b

25

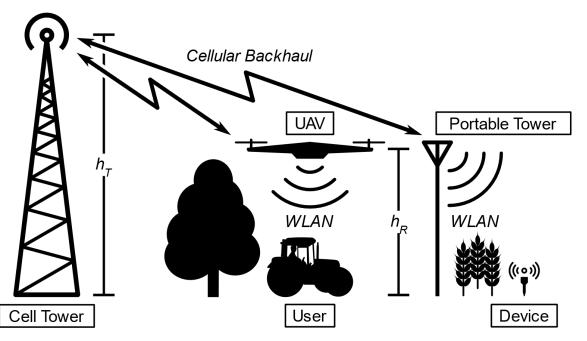
- Communication infrastructure deployed in rural areas lags its urban counterparts
 - Throughout the world
 - Network operators prioritize urban tower density
 - o mmWave will broaden the gap

- Communication infrastructure deployed in rural areas lags its urban counterparts
 - Throughout the world
 - Network operators prioritize urban tower density
 - mmWave will broaden the gap

IN Area (km²)	Sim. Area (km²)	Carrier Freq. (MHz)	Max. Allowed Loss (dB)	Covered Area (km²)	Max. Cell Radius (km)	Max. Cell Area (km²)	Min. # of New Towers Needed	# of Existing Towers
94,321	52,348	1900	150*	52,348	2.44	18.7	0	819
		3700		51,044	1.49	7.0	187	
		4700		47,159	1.25	4.9	1064	
		7000		34,187	0.98	3.0	6029	
		13,000		10,312	0.86	2.3	18,062	
		28,000		2291	0.69	1.5	32,988	

* The typical max. allowed path loss for LTE systems is 140 dB: Y. Zhang, T. Arakawa, J. V. Krogmeier, C. R. Anderson, D. J. Love and D. R. Buckmaster, "Large-Scale Cellular Coverage Analyses for UAV Data Relay via Channel Modeling," ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp. 1-6, doi: 10.1109/ICC40277.2020.9149403.

- Communication infrastructure deployed in rural areas lags its urban counterparts
 - Throughout the world
 - Network operators prioritize urban tower density
 - o mmWave will broaden the gap


x US\$200,000-250,000/tower

IN Area (km²)	Sim. Area (km²)	Carrier Freq. (MHz)	Max. Allowed Loss (dB)	Covered Area (km²)	Max. Cell Radius (km)	Max. Cell Area (km ²)	Min. # of New Towers Needed	# of Existing Towers
94,321	52,348	1900	150*	52,348	2.44	18.7	0	819
		3700		51,044	1.49	7.0	187	
		4700		47,159	1.25	4.9	1064	
		7000		34,187	0.98	3.0	6029	
		13,000		10,312	0.86	2.3	18,062	
		28,000		2291	0.69	1.5	32,988	

* The typical max. allowed path loss for LTE systems is 140 dB: Y. Zhang, T. Arakawa, J. V. Krogmeier, C. R. Anderson, D. J. Love and D. R. Buckmaster, "Large-Scale Cellular Coverage Analyses for UAV Data Relay via Channel Modeling," ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp. 1-6, doi: 10.1109/ICC40277.2020.9149403.

- Key Rural Wireless Communications Characteristic to Take Advantage of...
 - Temporary Coverage
 => On-demand Facility Deployment

- Millimeter Wave (mmWave)
 - Extremely sensitive to blockages
- Channel Charting (CC)
 - Advantage: Unsupervised learning
 - New challenge: Higher precision required
- Dense network is impractical in near future
 - Especially for ubiquitous coverage in rural areas
 - Potential solutions
 - Site-specific channel modeling & simulation
 - On-demand facility deployment

Thank you!

Sponsorship for this work was provided by the Foundation for Food and Agriculture Research (FFAR) under Award 534662, and the NSF under grants CNS-1642982 and EEC-1941529.

Thanks to Professor Jinha Jung at Purdue University for assisting with the Indiana statewide LiDAR data set.

Yaguang Zhang ygzhang@purdue.edu

